
1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2839599, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2017 1

Webpage Depth Viewability Prediction using
Deep Sequential Neural Networks

Chong Wang, Shuai Zhao, Achir Kalra, Cristian Borcea, Member, IEEE and Yi Chen, Member, IEEE

Abstract—Display advertising is the most important revenue source for publishers in the online publishing industry. The ad pricing
standards are shifting to a new model in which ads are paid only if they are viewed. Consequently, an important problem for publishers
is to predict the probability that an ad at a given page depth will be shown on a user’s screen for a certain dwell time. This paper
proposes deep learning models based on Long Short-Term Memory (LSTM) to predict the viewability of any page depth for any given
dwell time. The main novelty of our best model consists in the combination of bi-directional LSTM networks, encoder-decoder structure,
and residual connections. The experimental results over a dataset collected from a large online publisher demonstrate that the
proposed LSTM-based sequential neural networks outperform the comparison methods in terms of prediction performance.

Index Terms—Computational advertising, viewability prediction, sequential prediction, recurrent neural networks, user behavior

F

1 INTRODUCTION

Online display advertising brings many marketing benefits,
e.g., efficient brand building and effective audience target-
ing. In display advertising, an advertiser pays an online
publisher for space on webpages to display a banner during
page views in order to attract visitors that are interested in
its products. A typical display ad is shown in Figure 1. A
page view happens when the webpage is requested by a user
and displayed on a screen. One display of an ad in the page
view is called an ad impression, the basic unit of ad delivery.

Pay-by-action and pay-by-impression are the two main
ad pricing models adopted in the current online display
advertising ecosystem. In pay-by-action, advertisers are
charged when the impressions are clicked on or converted
(i.e., purchase). However, the click and conversion rates are
often very low; and, often, advertisers cannot achieve their
marketing goals and thus lose trust in publishers. Further-
more, pay-by-action is not suitable for certain advertisers,
e.g. banks, that do not expect users to immediately purchase
their products and service through ads. They just expect
users to get familiar with their products and recall them in
the future.

• Chong Wang is with the Department of Information Systems, New Jersey
Institute of Technology, USA.
E-mail: cw87@njit.edu

• Shuai Zhao is with Martin Tuchman School of Management, New Jersey
Institute of Technology, USA.
E-mail: sz255@njit.edu

• Achir Kalra is with Forbes Media LLC and with the Department of
Computer Science, New Jersey Institute of Technology, USA.
E-mail: akalra@forbes.com

• Cristian Borcea is with the Department of Computer Sciences, New Jersey
Institute of Technology, USA.
E-mail: borcea@njit.edu

• Yi Chen is with Martin Tuchman School of Management, with a joint
appointment at the College of Computing Sciences, New Jersey Institute
of Technology, USA.
E-mail: yi.chen@njit.edu
The first two authors contributed equally to this work. Yi Chen is the
corresponding author.

Manuscript received September 03, 2017.

Fig. 1: Display Ad Example

In pay-by-impression,
advertisers have to pay
once an impression is
sent to the user side,
i.e. served. However, re-
cent studies [1] show that
half of the impressions are
in fact not viewed by users.
The users do not scroll to
the page depth where the
ads are placed and/or do
not spend adequate time
at that page depth. In this
case, although advertisers
are charged for the im-
pressions, their marketing
message is not received by
users.

To solve the problems
with the existing pricing models, a new model is on the
way: pricing ads by the number of impressions viewed by
users. This is attractive for advertisers, which want a good
return on investment. The Interactive Advertising Bureau
(IAB) defines a viewable impression as one that is at least 50%
shown on the screen for a dwell time of at least one second.
The advertisers may require different values for the visible
ad area and/or the dwell time in their contracts with the
publishers.

As Figure 1 shows, we aim to predict the likelihood
of an ad being viewable at a given webpage depth and
for a given dwell time. It is helpful in many scenarios: 1)
In guaranteed delivery, according to different viewability
requirements, publishers can determine which ad to be
served by predicting its viewability in order to maximize the
revenue. 2) In real-time bidding, advertisers can decide the
bidding price based on the predicted viewability. Therefore,
ad viewability prediction is essential to maximize the return
on investment for advertisers and to boost the advertis-
ing revenue for publishers [2]. 3) Viewability prediction



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2839599, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2017 2

is expected to also be useful in dynamic webpage layout
selection. The publishers can select or create personalized
webpage templates in real-time to optimize user experience
and ad viewability.

Viewability prediction is challenging due to the vari-
ability of user behavior. First, users may stop reading at
any time [3]. In other words, reading is more casual than
other user behaviors (e.g., clicks). Second, the user reading
history is also very sparse: most users read only a few
webpages in a website, while a webpage is visited by a small
subset of users. Existing work [4], [5] estimates page depth
viewability by predicting the probability that a user will
scroll to that page depth, but it does not consider the dwell
time. Another work [6] takes dwell time into account, but
it does not utilize information on the user behavior on the
page before reaching the given page depth. Intuitively, the
time that a user spends at a page depth could be influenced
by her behavior at the previous page depths in the page
view. For example, a user who carefully reads the previous
page depths will probably spend longer time at the current
page depth than a other user who does not. We expect that
incorporating such sequential information will improve the
prediction performance.

To model this sequential information, we use deep
learning, which is able to learn representations of data with
multiple levels of abstraction [7]. Deep learning models
have recently been shown effective in discovering intricate
patterns in big data, such as disease detection [8], language
translation [9], and car auto driving [10]. Specifically, we
develop LSTM-based models to predict the dwell time
sequence because these models can take advantage of the
information about user behavior on the page before the user
reaches the given depth. Deep learning LSTMs [11] are a
type of recurrent neural networks which are designed to
control the long-term dependency issue by adding gates to
control how much past information is transferred through
time steps.

We propose four LSTM-based models. In the first,
LSTM noInteract, every time step outputs one viewability
prediction value. The input of each time step contains
information about the user, the page, the depth, and the
context. The first three features are learned using the embed-
ding layers. The second model, LSTM Interact, improves
on this by considering the interaction of user, page, and
depth; the model multiplies their embedding vectors before
sending the information to the LSTM layers. The third
model, BLSTM Interact, incorporates the fact that users of-
ten scroll-back on pages; this bi-directional model considers
the dwell time sequence in both scrolling directions. The
fourth model, RED BLSTM Interact, uses residual connec-
tions and encoder-decoder structure within BLSTM Interact
to better train the stacked LSTM layers and avoid the
vanishing gradient problem [11] and data noise.

We evaluate our models using real data from Forbes
Media, a large web publisher. The experimental results
demonstrate that our models outperform the comparison
models, i.e. GlobalAverage, Logistic Regression, and Factor-
ization Machines. The model with the best performance is
RED BLSTM Interact.

To summarize, our main contributions are:

• To the best of our knowledge, we are the first to pro-
pose dwell time prediction models for ad advertising
in web publishing.

• We propose the usage of sequence-to-sequence LSTM
networks for dwell time prediction and consider
the interaction of user, page and depth to improve
the prediction. A further improvement is obtained
through the incorporation of bi-direction dwell time
sequences in the model.

• We propose a new deep learning model for our
problem that adds residual connections and encoder-
decoder structure within bi-directional LSTMs.

• Our experimental results with real-world data
demonstrate that our models outperform compari-
son solutions.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 describes the dataset
and presents the results and analysis of an empirical study
for page depth-level dwell time. Section 4 shows the pro-
posed models for page depth viewability prediction. Exper-
imental results and insights are presented in Section 5. The
paper concludes in Section 6.

2 RELATED WORK

Existing studies develop models to predict the dwell time
that a user will spend on a web page, considering the whole
page as a unit, not dwell time prediction on a specific
page depth. Liu et al. [12] use Weibull distributions to
model page-level dwell times spent by all the users on
all pages, and estimate the parameters in the distribution
using a Multiple Additive Regression Tree. The features
used include frequencies of HTML tags, webpage keywords,
page size, the number of secondary URLs, and so on. The
authors find that page-level dwell time is highly related
to webpage length and topics. Yi et al. [13] consider the
average dwell time of a webpage as one of the item’s
inherent characteristics, which provides important average
user engagement information on how much time a user will
spend on this item. The authors use a support vector regres-
sion to predict page-level dwell time with features such as
content length, topical category, and device. Kim et al. [14]
present a regression method to estimate the parameters of
the Gamma distributions of dwell times that a user spends
on a clicked result in a webpage. The features they adopt are
similar to those used in Liu et al. [12]. Yin et al. [3] run an
analysis of real data collected from a joke sharing mobile
application and find that the dwell times satisfy a log-
Gaussian distribution. Xu et al. [15] propose a personalized
webpage re-ranking algorithm using page-level dwell time
prediction. They predict dwell time based on users’ interests
to page contents. The authors assume that users always read
documents carefully. This assumption may not be applicable
in our application, where users probably do not have the
patience to read entire webpages.

In summary, the above-mentioned studies address the
problem of page-level dwell time prediction, whereas this
paper presents models for depth-level dwell time predic-
tion. Existing work for page-level dwell time prediction can-
not be easily adapted for depth-level dwell time prediction,
which is at a finer granularity. New challenges that need to

vahini
Highlight

vahini
Highlight

vahini
Highlight

vahini
Highlight

vahini
Highlight

vahini
Highlight

vahini
Highlight



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2839599, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2017 3

be addressed include: significant variability of user behavior
at depth-level, data sparsity, different features associated
with depth-level predictions, and relationship between the
dwell times of adjacent depths.

The method proposed in [6] is our early attempt to
predict ad viewability by estimating the dwell time of a
user at the given webpage depth where an ad is placed.
This model is based on Factorization Machines [16] that
consider three basic factors (i.e., user, page, and page depth)
and auxiliary information (e.g., the area of a user’s browser
visible on the screen). The current work is different from this
previous work in two aspects. First, the problem setting is
different: in this paper we take into consideration a user’s
behavior at previous page depths to predict the dwell time
that she spends in a given page depth in a page view, which
is not considered previously. Second, proposed techniques
are different: we propose four prediction models based
on deep learning, instead of Factorization Machines. We
present empirical comparisons of the new method with the
one in [6] in Section 5.

A less related area is viewabilty prediction: to predict
the likelihood of a user to scroll to a given page depth in
a page. Wang et al. [4], [5] propose probabilistic latent class
models for page-depth viewability prediction. In contrast,
this paper presents models to predict how long a user may
stay in a given page depth.

3 REAL-LIFE DATASET

3.1 Data Description

A large web publisher (i.e., Forbes Media) provides user
browsing logs collected from all user visits in April 2016
and webpage metadata. Each webpage is an article written
by contributors to Forbes Media. The dataset contains 5
million page views and 14K unique pages/articles, which
are owned by Forbes Media. After a page is loaded and dis-
played, the user logs record the user behavior information
within that page, such as user id, page URL, state-level user
geo location, user agent, and browsing events, e.g., the user
opened/left/read the page. Table 1 gives an example of the
raw data. Once a user scrolls to a page depth and stays for
1s, an event is recorded. The page depths whose dwell times
are less than 1s will not be recorded in the data, in which
case we consider their dwell time to be 0s. The page depth is
represented as the percentage of the page, ranging from 1%
to 100%. It is noticed that if a user scrolls back to previous
depths, we will add dwell time to the previous depths.

TABLE 1: A Snippet of the User Log

User URL ... Event
Name

User Behavior Time

001 /abc ... Page
Read

{First row: 12,
Last row: 56,
Screen Size:,
· · ·}

4/6/2016
6:25:15

001 /abc ... Page
Read

{First row: 12,
Last row: 56,
Screen Size:,
· · ·}

4/6/2016
6:25:48

Fig. 2: The Average Dwell Time of Page Depths

Each event has a timestamp so that the time that a user
spends on a part of a page can be calculated. To infer the
current part of a page that a user is looking at, the user log
also records the page depths at which the first and the last
rows of pixels of the screen are. Thus, we are able to infer
the part of the page to which the user scrolls and how long
the user stayed at that part of the page. Therefore, the dwell
time at a page depth can be calculated from the information
provided by the user log. Existing work [17] uses almost the
same method to accumulate the dwell time of a viewport
position (i.e., the area of a user’s browser visible on the
screen). However, in this existing work, vertical positions
are measured by pixels, instead of page percentages. The
reason that we adopted page percentages is because they
provides a relative measure independent of the device
screen size. If a user reads 50% of a page on a mobile device,
while another user reads 50% of the same page on a desktop,
it is assumed that they read the same content.

3.2 Empirical Observations

We sample 10% of the page views in order to conduct a
preliminary data investigation. The average dwell time at
each page depth is shown in Figure 2. For example, the
maximum average dwell time is 15.42s at the page depth
of 35%. According to this figure, the average page depth-
level dwell time becomes larger initially and then decreases
on the second half of webpages. Users spend less time at
the top and bottom areas of web pages. This is because
the top areas typically contain the navigation bar, mostly
titles in big font, or advertisements while the bottom areas
contain mostly recommendation to other articles. Users tend
to quickly skip these areas and go to the body of content.
After reading the body of content, users often leave pages
without reading the recommended links.

Figure 3 shows the fraction of page depths whose dwell
times are at least 1 second, which is the default duration
threshold set by IAB. The threshold can be customized by
publishers and especially advertisers. In our experiments
(Section 5), we evaluate the proposed models under dif-
ferent duration thresholds. Figure 3 can be derived from
Figure 2 by setting a dwell time threshold, i.e., 1s because
the curves share a very similar shape. It can also be observed
that page depth viewability has three phases: It goes up
initially and gradually decreases once it reaches the page
percentage of 20%. In the last quartile of a page, the viewa-
bility goes down at a larger rate.



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2839599, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2017 4

Fig. 3: The Distribution of Page Views whose Dwell Times
at the Corresponding Page Depths Are at Least 1s

Fig. 4: The Cumulative Distribution of Page-Depth Dwell
Time

Figure 4 shows the cumulative percentage of all page-
depths over increasing dwell time. We notice that 38.87% of
all page depths have the dwell time of 0 seconds. This means
that the users either quickly scroll past these page depths or
leave the pages before scrolling to these page depths. This is
intuitive in that users skip the uninteresting areas and only
focus on the content they have interest. We also observe that
the cumulative percentage for dwell time up to 60 seconds
is 94.04%. In other words, users usually spend no more than
one minute at one page depth.

Since we use a real-life dataset, it is inevitable to observe
outliers in which the depth-level dwell time is extremely
high, e.g., hundreds of seconds. This is due to the fact that
some users leave the web pages open and go away from
their computers. These outliers have no value for the dwell
time prediction. Thus, according to the results in Figure 4,
we set a threshold of 60 seconds for depth-level dwell times.
The entire page view is discarded from the dataset if the
dwell time of one of its depth exceeds 60 seconds.

Figure 5 shows the distribution of the number of user
actions in a page view. A user action is defined as a reading
event if a user scrolls to a part of a page and stays for at least
one second. A majority of page views have few actions. For
example, 26.96% of page views have only 1 action. There are
98.56% page views which have no more than 20 actions. The
results make sense because most users do not engage much
with pages. It is also observed that outlier page views with
as many as 297 user actions exist in the dataset. Therefore,
to remove the outliers, we discard the page views that have
more than 20 user actions.

Fig. 5: The Distribution of The Number of User Actions in a
Page View

4 WEBPAGE DEPTH VIEWABILITY PREDICTION

4.1 Problem Description
Problem Definition. Given an incoming page view (i.e., a user
u and a webpage a) and the required minimum dwell time t, the
goal is to predict the viewability of all page depths, denoted as
v1(u, a), ..., v100(u, a), i.e., a page depth is viewable if its dwell
time will be at least t seconds. The prediction is made after the
page was requested by the user and before the user engages with
the page.

In addition, another goal is to predict the exact dwell
time. The main difference is the output. The output for the
first goal, which solves a classification problem, is a proba-
bility value in the interval [0,1]. The output for the second
goal, which solves a prediction problem, is a non-negative
value in the interval [0,+∞]. We develop and implement
models to address both problems and show results in the
Section 5.

4.2 Background of LSTM RNN
Before discussing the proposed solution, we would like to
briefly introduce LSTM RNN first.

A recurrent neural network (RNN) [18] is a type of arti-
ficial neural network whose connections form cycles, which
enable RNN to handle long-term dependencies problems.
Unlike feedforward neural networks, RNN can use their
internal memory to process arbitrary sequences of inputs.
However, traditional RNNs suffer from the vanishing or
exploding gradient problem [19]: the network output either
decays or blows up exponentially as it cycles around the
network’s recurrent connections, due to the influence of a
given input on the hidden layer. Specifically, in the case of
decay, the gradient signal between time steps gets smaller
so that learning either becomes very slow or stops. This
makes the task of learning long-term dependencies in the
data more difficult. In addition, if the leading eigenvalue
of the weight matrix is more than 1.0, it can increase the
gradient signal, so that it can cause learning to diverge.

To avoid the long-term dependency problem, Long
Short-term Memory (LSTM) networks [11] have been pro-
posed. The LSTM network is a type of recurrent neural
network used in deep learning because it can successfully
train for very large architectures. The LSTM networks are
good at handling the cases that contain many long se-
quences. The architecture of LSTM is designed to remember

vahini
Highlight

vahini
Highlight

vahini
Highlight



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2839599, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2017 5

information for long periods of time. The key to LSTMs is
the multiplicative gates, which allow LSTM memory cells
to store and access information over long periods of time,
thereby avoiding the vanishing and exploding gradient
problem. Gates are a way to optionally let information
through. Researchers use a sigmoid neural net layer and a
pointwise multiplication operation to implement gates. The
output of the sigmoid neural net layer is either 0 or 1. A
value of 0 means a blocked way and a value of 1 means
an unobstructed way. The binary output of the sigmoid
network describes how much of each component should be
let through. LSTM RNNs have been shown to learn long-
term dependencies more easily than the simple RNNs.

The main advantage of LSTM RNN compared to Markov
chains and hidden Markov models is that it does not con-
sider the Markov assumption, and thus can be better at ex-
ploiting the potential patterns for modeling sequential data.
Also, LSTM RNN can discover deep relationship between
two time steps, as well as the input of a time step and
the outcome. The sequential dependency between the dwell
time of different depths is so complex and dynamic that time
series analysis of Markov model approaches are not capable
to model it effectively. Because of its good performance,
LSTM RNN has been used in language modeling [20],
speech recognition [21], and user searching behavior [22].

4.3 The Proposed Models

We propose to use LSTM RNN to solve the webpage depth
viewability prediction problem. In particular, we developed
four models: 1) LSTM RNN; 2) LSTM RNN with embedding
interaction; 3) bi-directional LSTM RNN with embedding
interaction; 4) residual encoder-decoder (RED) bi-directional
LSTM RNN with embedding interaction.

4.3.1 LSTM RNN Model
Many factors can influence a user’s emotion and cognition
when the user is reading a page. It is intuitive that the dwell
time of a page depth is highly related to the user’s interests
and reading habits [23], the topic of the article in the page,
aesthetic design at that page depth, etc. Different users may
have different reading patterns on an interesting page [17],
[24].

Thus, the characteristics of individual users, webpages,
and page depths should be taken into account for depth-
level dwell time prediction. However, it is non-trivial to
explicitly model user interests, page characteristics, and the
attractiveness of page depths. Web content publishers usu-
ally do not have detailed user profile information, including
gender and age. The only user profile they may know is the
user agent in the HTTP request and the user geo locations
inferred from IP addresses. Also, modeling page interesting-
ness and popularity is still an open research problem. More
importantly, the complex interactions of these three factors
must be modeled so that their joint effect is captured: 1)
The interaction of users and pages captures a user’s interest
in a page. 2) The interaction of users and page depths can
reflect individual users’ browsing habits. For example, some
users read entire pages carefully, but some only read the
upper half. 3) The interaction of pages and depths models
the design of individual pages at individual page depths.

For example, pages that have a picture at a depth may
receive relatively short dwell time at that depth because
people usually can understand a picture quicker than text.
Therefore, predicting user reading behavior at page depth
level is highly challenging.

The work in [6] is the most related to this study; it applies
Factorization Machines (FM) to predict the webpage depth-
level dwell time. However, the existing solution has two lim-
itations: 1) The latent features learnt by matrix factorization
cannot discover the deep joint effect of the input variables.
The FM model learns latent features for input variables
through a one-layer shallow network. It has limited ability
to discover and utilize deep relationship between the input
and the outcome. 2) The user engagement with the previous
page depth in the same page view is not considered. For
instance, if a user is predicted to spend long time at the
page depths from 1% to 20%, the user probably will stay
long at the page depth 21% as well.

This LSTM RNN model addresses these limitations as
follows: (1) It uses a deep neural network to capture the un-
derlying patterns between many input factors and webpage
depth viewability. (2) The proposed deep learning model
takes into account the predicted viewability of the previous
page depths in the same page view.

Our LSTM RNN considers the webpage depth-level
viewability prediction as a sequential prediction problem,
in which the predictions at the time steps (i.e., page depths)
can influence the prediction at the current time step. We
use LSTM in conjunction with RNN because the length of
each sequence in our application is as long as 100 and a
traditional RNN will suffer from the vanishing or exploding
gradient problem.

Fig. 6: Modelling Webpage Depth Viewability Prediction

Figure 6 presents the method used to solve the ’many-
to-many’ prediction problem by our LSTM RNN. The left
side is a webpage, which has 100 page depths. Each page
depth corresponds to one time step in the RNN setting, as
shown in the right side of the figure. The proposed method
makes predictions at every time step. The prediction is the

vahini
Highlight

vahini
Highlight

vahini
Highlight

vahini
Highlight



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2839599, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2017 6

Fig. 7: The LSTM RNN Model

viewability of the page depth in the specific page view.
The input of each time step includes information about
the user, the page, the depth, and the context. Since the
LSTM layers of each time step can generate a viewability
prediction, the hidden neurons in the LSTM should carry
information about the viewability of that time step. The
hidden layers at page depth i should be able to summarize
the viewabilities from page depth 1% to i. Therefore, using
LSTM to pass the information of the previous time steps
can incorporate the previously-predicted viewability into the
prediction at the current time step. Note that, since the
prediction for a page view is made before page loading,
the true viewability of all page depths are unknown. Thus,
the predicted viewability of the past page depths are used to
predict that of the current depth. The outputs at all page
depths v1(u, a), ..., v100(u, a) are counted to compute the
performance. Thus, the problem is modeled as a sequence
labelling (e.g. Part-of-speech tagging), where the true labels
of the past are unknown, instead of time-series (e.g. stock
price prediction), where the true labels of the past are used
in prediction.

Figure 7 presents the architecture of the proposed
(rolling) LSTM RNN used in webpage depth viewability
prediction. At each page depth, the LSTM RNN consists
of one input layer, two LSTM hidden layers, one output
layer, and the inner weight matrix. Given a user input
sequence x = (xu

1 , . . . , x
u
t ), the hidden layers vector se-

quence h = (hu
1 , . . . , h

u
t ) and the output vector sequence

y = (y1, . . . , yt) are computed by iterating the following
equations from the page depth d = 1 to t

hu
d = f(Whu

d−1 +Crud + bh) (1)

yd = f(Whu
d + by) (2)

Where hu
d ∈ R2 denotes the hidden representation of

a user u at depth d in a sequence, rud denotes the repre-
sentation of the depth d’s input of a user u. f(x) is the
activation function, and the b terms (i.e., bh and by) are bias
vectors. C ∈ Rn×n and W ∈ Rn×n are the transition matrix
for current depths and the previous status, respectively,
where n is the dimension of the embedding vector. W
can propagate sequential signals, and C can capture users’
current behavior.

With the suggestions of the domain experts at Forbes,
we consider significant information in the input layer. In
particular, the input layer concatenates several components:

• The user’s viewport size, i.e., viewport height and
width. A viewport is the part of a user browser visi-
ble on the screen. The viewport indicates the device
utilized by the user (e.g., a mobile device usually has
a much smaller viewport) and can directly determine
the user experience. To reduce sparsity, both heights
and widths are put into buckets with size 100 pixels.

• The user’s geo location, which is detected from user
IP addresses. Since individual users are identified
by cookie IDs, it is possible that the same user
visits the website from different locations in multiple
sessions. We consider user geo locations because
this is the only explicit feature about users that can
be easily obtained by publishers without violation
of user privacy. In practice, user geo may reflect a
user’s interests and education. Specifically, geo is the
country name if the user is outside USA or a state
name if she is within USA.

• local hour, and local day of the week (denoted by week-
day in the experiments), which are likely related to
user reading behavior.

• Article length is represented by the word count of
the article in the page, and it has been proven to
be a significant factor impacting page-level dwell
time [13]. Here, we utilize this feature because it
allows us to model the user effort in consuming the
content up to a given scroll depth. Article lengths are
put into buckets, so that there are a limited number
of possible states.

• Freshness is the duration between the reading time
and the time the page was published on the website.
Freshness is measured in days. The freshness of an
article may determine the interests of a user on it.
Fresh news may receive more user engagement.

• The channel and section of the article in a page are
its topical categories on the publisher’s website, e.g.,
finance and lifestyle. A channel can be considered as
a high-level topic label of a page. A section is defined
as a sub-channel at finer topical granularity.

• Other page attributes in the Forbes article metadata
are also taken into account: page type (e.g., “blog”,
“blogslide”, or “trendingactivity”), whether the page
is in standard template type, whether the page con-
tains any image, whether the article is written by
Forbes staff, and the number of user comments. All
context variables are modeled by one-hot encoding
for simplicity. As one common step of feature engi-
neering, rarely-occurred feature values are grouped
into “<feature name> OTHER” categories.



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2839599, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2017 7

Existing studies [22], [25] use mostly one-hot encoding
to represent the categorical variables which have millions of
values. However, this encoding increases a lot the sparsity
and width of the input layers. More importantly, it learns a
very limited representation of the variables. Therefore, it is
important to use a rich and dense representation to model
the most important categorical variables in the data. To this
end, our LSTM RNN uses three embedding layers to model
the three most important categorical variables: user, page,
page depth.

Before concatenating and feeding the four components
to the LSTM layers, we apply dropout to each component.
Dropout [26] is a simple and effective method to prevent a
neural network from overfitting. In particular, it randomly
sets a fraction of the units in an output vector to 0 at
each update during training time. By cross validation, the
fraction is set to 20%.

Stacked above the input layers are multiple LSTM layers.
The number of layers is a parameter that can be tuned by
experiments. Each can be considered as one reasoning step
based on the output of the previous layer. The number of
hidden nodes in each LSTM can be empirically determined.
Each LSTM layer has two outputs: 1) The first output
carries the information of this time step and is sent to the
counterpart at the next time step through a complex set of
gates. 2) The second output is passed to the next layer by an
activation function. Specifically, the activation function we
use is the Tanh function (Equation 3), which is non-linear
and outputs values in the (-1,1) range.

tanh(x) =
2

1 + e−2x
− 1 (3)

Unlike the sigmoid function whose output is not zero-
centered, the Tanh function is less likely to get the network
stuck in the current state during training. Also, the Tanh
function is not as fragile as the Rectified Linear Unit (ReLU).
A large gradient flowing through a ReLU neuron could
cause the weights to update in such a way that the neuron
will never activate on any data point again.

We also apply dropout to the output of each LSTM layer:
20% units in the output are randomly picked and set to 0.
The vertical output of the last LSTM x are passed into a
sigmoid function (Equation 4), which outputs a value that
in the [0,1] range.

sigmoid(x) =
1

1 + e−x
(4)

The output represents the page depth viewability, i.e.,
the probability that the page depth will be viewable.

4.3.2 LSTM RNN with Embedding Interactions Model
The model presented so far (termed LSTM noInteract from
now on) can be further improved by capturing the interac-
tions of the three important factors: user, page, and page
depth. The extended model introduced in this section is
denoted as LSTM Interact.

Like most of general neural networks, the
LSTM noInteract only captures the OR relationships among
input factors, rather than the AND relationship. The input
of an activation function at a layer is a linear combination
of the input units passed from the previous layer. For

Fig. 8: Example of Propagation without Interaction

Fig. 9: Example of Propagation with Interaction

instance, Figure 8 shows a part of an example network.
The two embedding vectors have values [p1, p2, ..., pn] and
[q1, q2, ..., qn], respectively. n is the length of the embedding
layers. The input of the neuron yj in the next layer is
shown in Equation 5 (assuming the activation function is
tanh). wp

i,j is the weight in connecting the ith neuron in
the embedding 1 to the neuron yj . wq

i,j is the weight in
connecting the ith neuron in the embedding 2 to the neuron
yj . pi and qi are the values of the ith neuron in embedding
1 and 2, respectively. n is the length of the latent vectors.
Thus, like all vanilla neural networks, the LSTM noInteract
does not consider the pairwise interaction of the embedding
layers.

yi = tanh(
n∑

i=1

wp
i,j × pi +

n∑
i=1

wq
i,j × qi) (5)

To solve this problem, we use knowledge from the
recommender system field. For example, to predict a movie
rating for an unseen user and movie pair, one simple way is
to use matrix factorization, e.g., Singular Vector Decompo-
sition (SVD). SVD learns a latent vector for each user/item.
Given an unseen user and item pair, the dot product, i.e.,
the interaction, of the user latent vector pu and the page
latent vector qi is the predicted outcome, e.g., a movie rating:
r̂ui = qTi pu. In other words, it sums up all values generated
by element-wise vector multiplication (i.e., multiplying two
embedding vectors element by element).

In our case, the embedding vector of an entity can be
regarded as a latent vector in SVD. Thus, we can use a
similar method to capture the interaction of multiple input
factors. Figure 9 is an example for the interaction between
user and page. The embedding layers learn user embed-
ding and page embedding with same dimension. Then, the
model generates the interaction layer based on element-wise
vector multiplication between the user embedding and the

vahini
Highlight



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2839599, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2017 8

page embedding. We use the same method to capture the
interaction between user and page depth, as well as page
and page depth. Assuming the activation function is tanh,
an element yi in the interaction vector is defined as:

yi = tanh(pi ∗ qi) (6)

For example, the interaction of [1 0 3] and [2 3 7] is [2 0
21]. The interaction of two embedding layers of length d is a
vector of length d. The resulting values will be summed up
with other factors in the next layer.

Fig. 10: The LSTM RNN with Embedding Interaction Model

Therefore, at the input layer of the second model, we also
consider the 2-way interaction and the 3-way interaction of
user, page, and depth embeddings (shown in Figure 10).
The resulting four interaction vectors are then concatenated
with the other input vectors that are already considered in
the LSTM noInteract. This extended model is denoted as
LSTM Interact.

4.3.3 Bi-directional LSTM RNN Model
It is commonly-observed that users often scroll-back on
pages as well. Therefore, dwell time of lower page depths
could indicate the dwell time of upper page depths. For
instance, a user who spent a long time at the last paragraph
of an article and is scrolling up will probably stay long
in the middle of the page. The possible reason is that the
last paragraph may rekindle the user’s interest to the entire
article. In this case, single directional LSTMs fail to capture
such backward patterns to improve prediction performance.

Moreover, in single directional LSTM, predictions made
at very top page depths rely on few previous page depths.
For instance, as the Figure 6 indicates, only the LSTM layers
at the page depth of 1% can contribute to the prediction at
the page depth of 2%. Only the LSTM layers of 1% is known
when predicting the output of 2% because predictions are
made sequentially from page top to the bottom, i.e. single
direction. The information of the page depths after 2%
are inaccessible. In this case, relying on very few previous
information can lead to unreliable prediction outcome at

Fig. 11: The Bi-directional LSTM RNN with Embedding
Interaction

Fig. 12: Bidirectional LSTM Recurrent Neural Network
(from [21])

very top page depths. Less accurate prediction at top page
depths may distort the predictions at further page depths.
Such problem can be overcome if the page depths after
a current one can be taken into account. In this case, the
prediction at any page depth considers the information of
the other 99 page depths.

Therefore, it may be helpful to enhance the proposed
models using a bi-directional LSTM RNN [21], which propa-
gates information in both directions. As Figure 12 shows, Bi-



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2839599, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2017 9

directional LSTMs combine a single directional LSTM that
moves forward through time, beginning from the start of a
sequence, with another LSTM that moves backward through
time, beginning from the end of a sequence. It allows the
output at a time step t to compute a representation that
depends on both the past and the future but in most sen-
sitive to the input around the input at t, without having to
specify a fixed-size window around t [27]. A bi-directional
LSTM RNN iterates the backward hidden layer from d = t
to 1, and the forward layer from d = 1 to t. Then it can
compute the forward hidden sequence

−→
h , the backward

hidden sequence
←−
h and the output sequence y as follows

−→
hu
d = f(

−→
Whu

d−1 +
−→
C rud +

−→
b h) (7)

←−
hu
d = f(

←−
Whu

d−1 +
←−
C rud +

←−
b h) (8)

yd = f(
−→
Whu

d +
←−
Whu

d + by) (9)

In particular of our case, the bi-directional LSTMs re-
place the LSTM layers in Figure 10: one forward LSTM and
one backward LSTM running in reverse direction and with
their outputs merged at the output layer. Figure 11 shows
the architecture of the proposed bi-directional LSTM RNN.
The forward LSTM operates as usual: it carries information
of the past page depths. In contrast, the backward LSTM
flows from the page bottom to the top. It brings information
about the dwell time of the page depths that are lower than
the current page depth. Along with the input at the current
page depth, their outputs are then merged by element-wise
averaging because they would equally contribute to the
outcome of the page depth. A dropout of 20% follows to
avoid overfitting. In this way, bi-directional LSTMs enable
information from both past and future to come together.

Bi-directional LSTM RNNs have been used in speech
recognition [21] and bio-informatics [28]. Bi-directional
LSTMs are useful in some applications, where the prediction
outcome of a time step depends on the entire input se-
quence, rather than only the past and present. To the best of
our knowledge, we are the first to apply bi-directional LSTM
networks in user behavior prediction. This bi-directional
LSTM RNN is denoted as BLSTM Interact.

4.3.4 Residual Encoder-Decoder Bi-directional LSTM RNN
Model

One limitation to training stacked LSTM layers is the vanish-
ing gradient problem. Adding residual connections between
LSTM layers has been shown effective in a recent Google’s
Neural Machine Translation study [9]. Inspired by this work,
we add residual connections between our bi-directional
LSTM layers, as shown in Figure 13. Residual connections
add a “highway” to skip some layers. Instead of hoping
each few stacked layers directly fit a desired underlying
mapping, residual networks explicitly let these layers fit a
residual mapping [29], [30]. The idea of residual connection
can be formally expressed as:

xl = Hl(xl−1) + xl−1 (10)

where xl−1 and xl are the input and output of the lth

units, and Hl(.) denotes the residual function.

Fig. 13: RED-BLSTM˙Interact Structure

For the residual function Hl(.), we consider sequence-
to-sequence LSTM embedding, which comprises of two bi-
directional LSTM layers; one is used for encoding, and the
other for decoding. The difference between the encoder
and the decoder is the output dimensionality, i.e., number
of neurons in each layer. The BLSTM encoder has much
smaller dimensionality than the decoder. The ouput dimen-
tionality of the deconder is the same with the input of
encoder.

Sequence-to-sequence LSTM embedding is effective to
improve classification accuracy through learning feature
representation and removing noise [31]. The idea originated
in autoencoder, an artificial neural network for efficient
coding that is widely used in sematic learning and feature
reduction [32], [33]. It has two phases: an encoder phase h(·)
maps an input layer x ⊂ Rn to the hidden layer h(x) ⊂ Rk,
and a decoder phase g(·) maps the hidden representation
h(x) back to the original input space g(h(x)) ⊂ Rn. The
parameters of autoencoders are learned from minimizing
the difference between the input and the output, i.e., loss
L(x, g(h(x)). The dimension of the learned embedding is k,
which is typically much smaller than its original dimension-
ality n.

The difference between our encoder-decoder structure
and autoencoder is that an autoencoder learns feature rep-
resentation or reduction as in unsupervised learning prob-
lems. Our model, on the other hand, directly utilizes the
reconstructed features g(h(x)) instead of the embedding
layer h(x). Compared with the original input data x, it can
remove noise in the reconstructed data g(h(x)). Another
benefit is that it can reduce the computational cost by using
a smaller number of neurons in the decoder BLSTM layer.

5 EXPERIMENTAL EVALUATION

5.1 Settings
A three-week user log is collected from a real business
platform as described in Section 3. The user log contains
user visits of Forbes article pages. After pre-processing,
the final dataset contains about 40K unique users and 30K
unique pages. The dataset is split into training, validation
and test data sets.

To build training data, some existing studies [6] itera-
tively set a threshold and select only frequent users and



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2839599, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2017 10

pages/items in the training data. However, in this work,
following the suggestion of [34], our training data contains
all users and pages, including casual users and niche pages.
The reasons are 1) deep learning models require large input
dataset in order to avoid overfitting; 2) the model can handle
more users an pages which do not occur frequently. 3) in
practice, new pageviews with unseen users or pages can
be directly used to incrementally train the models with
stochastic gradient descent.

To build validation and test data, we randomly select
pageviews whose users and pages occur at least five times in
the training data. These pageviews are exclusively separated
into the validation and test sets. In this way, we avoid cold-
start problem: all users and pages in the validation and test
sets occur at least five times in the training data.

As a result, the training set, validation set, and test set
contain about 100K, 11K, and 11K pageviews, respectively.
One page view has 100 page depths, i.e., time steps. Since
the RNN LSTM parameters are shared by all time steps, the
parameters are trained based on about 10M page depths in
each epoch.

At the beginning of each epoch, the training data is shuf-
fled. The error on the validation set is used as a proxy for the
generalization error. We use validation-based early stopping
to obtain the models that work the best with the validation
data. Since it is common that the validation error may
fluctuate during training (producing multiple local minima),
the maximum number of epochs is set to 10. By observing
the curve of validation errors, it can be guaranteed that
overfitting occurs within the first 30 epochs. The models
with the minimum validation error are saved and used
to predict the testing data. We observe that the minimum
validation errors are often obtained at the 4th-6th epochs.
In addition, since the exact prediction performance varies
by several factors, e.g., parameter initialization, all models
are run three times. The reported performance results are
obtained by averaging the three runs.

5.2 Implementation

The proposed LSTM RNN models are implemented using
Keras [35] with Theano [36] backend. The experiments are
run on a desktop with i7 3.60Hz CPU and 32GB RAM. The
matrix computation is sped up using NVIDA GeForce GTX
1060 6G GPU. Running 10 epochs usually takes 5-8 hours
depends on the parameter setting.

Considering the training speed and memory consump-
tion, we set the training batch size to 256. Existing work [37]
indicates that a large batch size might alleviate the impact
of noisy data, while a small one sometimes can accelerate
the convergence. Hence, we varied the batch size, e.g., 128
and 512, but no significant differences have been observed.

During the training processes, the parameter is initial-
ized by sampling from a uniform distribution. The opti-
mizer we adopt is Stochastic Gradient Descent (SGD), which
can can overcome the high cost of backpropagation and still
lead to fast convergence, with a learning rate of 0.01, a learn-
ing rate decay of 1e-6, and a momentum of 0.99. Nesterov
momentum is also enabled. An existing study [38] finds
that momentum-accelerated SGD are effective for training
RNNs. We also tried RMSprop and Adam optimizers. Al-

though Adam can further accelerate convergence, neither
beats SGD for the performance.

5.3 Comparison Models

GlobalAverage: In a training page view, if the dwell time
of a page depth is at least t seconds, the viewability of the
page depth in the page view is considered to be 1; other-
wise, it is 0. Therefore, we can calculate what percentage
of page views are viewable at each page depth. The 100
constant numbers obtained are used to make deterministic
predictions for the corresponding test page depths.

Logistic Regression (LR): Since the viewability pre-
diction can be considered as a classification problem. A
logistic regression model is developed as a baseline. The
input variables are almost the same as those used in the
proposed model. LR models user, page, and depth using
one-hot encoding. Using Keras, we develop a one-layer
neural network with sigmoid activation function to mimic
a logistic regression. The LR is trained following the same
process as the proposed models. The learning method is also
SGD with learning rate 0.001.

Factorization Machines (FM): Factorization machines
(FM) [16] are a generic approach that combines the high-
prediction accuracy of factorization models with the flexi-
bility of feature engineering. This method has been widely
used in many applications. The basic idea of FM is to model
each target variable as a linear combination of interactions
between input variables. Formally, it is defined as following.

ŷ(x) = w0 +
n∑

i=1

wixi +
n−1∑
i=1

n∑
j=i+1

〈vi,vj〉xixj

where, ŷ(x) is the prediction outcome given an input x.
w0 is a global bias, i.e., the overall average depth-level dwell
time.

∑n
i=1 wixi is the bias of individual input variables. For

example, some users would like to read more carefully than
others; some pages can attract users to spend more time on
them; some page depths, e.g., very bottom of a page, usually
receive little dwell time. The first two terms are the same
as in linear regression. The third term captures the sparse
interaction between each pair of input variables.

In the experiments, the FM model is implemented based
on [6]. The proposed FM model considers four input vari-
ables: user, page, depth, and viewport size.

5.4 Metrics

As mentioned in Section 4.1, there are two ways to handle
dwell time prediction: one computes the probability that a
given page depth is shown on the user screen for a given
dwell time (i.e., a classification problem); the other predicts
the exact dwell time at each page depth. To measure the
classification performance, we adopt Logistic Loss, Accu-
racy, Area Under Curve (AUC). To evaluate the exact dwell
time prediction, we adopt RMSD.

Logistic Loss: It is widely used in probabilistic classifi-
cation. It penalizes a method more for being both confident
and wrong. Lower values are better.



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2839599, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2017 11

logloss =

− 1

N · 100

N∑
i=1

100∑
j=1

[yij log(ŷij) + (1− yij) log(1− ŷij)]

where N is the number of the test page views. Each
has 100 page depths, i.e., 100 prediction outputs. ŷij is the
predicted viewability and yij is the actual viewability at the
jth page depth in the ith page view.

Area Under Curve (AUC): The AUC is a common
evaluation metric for binary classification problems, which
is the area under a receiver operating characteristic (ROC)
curve. An ROC curve is a graphical plot that illustrates the
performance of a binary classifier system, as its discrimina-
tion threshold is varied. The curve is created by plotting the
true positive rate against the false positive rate at various
threshold settings. If the classifier is good, the true positive
rate will increase quickly and the area under the curve will
be close to 1. Higher values are better.

Accuracy: The accuracy classification score computes
the percentage of the test instances which are correctly
predicted. It is noticed that the accuracy scores may be
slightly influenced by the threshold. We choose accuracy
as an intuitive metric and set the threshold to the ordinary
setting value of 0.5 [39], [40] in our experiment.

Compared with accuracy, AUC and Logistic Loss are not
influenced by specific thresholds. They are better metrics if
the class distribution is highly imbalanced.

Root-mean-square Deviation (RMSD): It is used in
dwell time prediction, which is a regression problem. RMSD
measures the differences between the values predicted, ŷi,
and the values observed, yi.

RMSD =

√∑N
j=1

∑100
i=1(ŷij − yij)2

N · 100
N is the number of test page views. The second sum
accumulates the errors at all 100 page depths in the ith page
view. yij is the actual dwell time at the jth page depth in
the ith page view. Lower values are better.

5.5 Comparison of Our Proposed Models

Fig. 14: Log-loss Performance of Our Models

This section compares the performance of the proposed
models. Figure 14 shows their performance in the test

data. The models contains two LSTM layers, each of which
has 500 hidden neurons. The embedding layers have 500
hidden neurons. This network configuration is obtained
experimentally, as discussed in Section 5.7. To evaluate the
models’ performance with different viewability thresholds,
i.e., minimum required dwell time, we set three thresholds:
1s, 5s, and 10s. The viewability threshold of 1s is in line
with the viewability definition suggested by the IAB. In the
experiment, the models are compared by log-loss, accuracy
and AUC. However, since we observed that the model with
lower log-loss also has higher accuracy and AUC, only the
log-loss results are shown.

The RED-BLSTM Interact model performs best, as it
leverages residual connections and encoder-decoder struc-
ture for better learning. The results verify that the residual
encoder-decoder method can consistently enhance the per-
formance for all metrics under all three viewability thresh-
olds. We also notice that the effectiveness of BLSTM Interact
in utilizing the predicted behavior for both past page depths
and future page depths. In addition, LSTM Interact per-
forms better than LSTM noInteract because it captures the
embedding interaction.

Comparing across viewability thresholds, the perfor-
mance for 1s is the best. Surprisingly, the performance for
5s is not as high as that of 10s. This is because the number
of positive instances, i.e., the page depths whose dwell
times are at least 5s, and negative instances, i.e., the page
depths whose dwell times are less than 5s are almost equal
(as shown in Figure 4). This makes the prediction more
challenging.

5.6 Performance Comparison with Other Baselines
This section compares our two best model, RED-
BLSTM Interact and BLSTM Interact, with other compari-
son methods using the log-loss, accuracy, and AUC metrics.
The parameter settings of the proposed model is the same
as the ones used previously.

Tables 2, 3, and 4 present the performance comparison
with three viewability thresholds. The RED-BLSTM Interact
and RED-BLSTM Interact models are clearly better than the
comparison methods for all three metrics: The lower log-
loss indicates that our models have fewer mistakes due to
over-confidence, and this is also reflected in the accuracy
results. The higher AUC values show that our models
also obtain better performance on average by varying the
decision boundary from 0 to 1. The results verify that our
sequential neural network models can consistently enhance
the performance for all metrics under all three viewability
thresholds.

TABLE 2: Viewability Prediction. Threshold = 1s

Approaches Logloss Accuracy AUC
GlobalAverage 0.6586 59.45% 61.98%
Logistic Regression 0.6484 63.36% 62.55%
FM 0.6273 64.88% 66.11%
BLSTM Interact 0.6016 67.36 % 71.54 %
RED-BLSTM Interact 0.5985 67.70% 71.97%

The performance of our models, and especially of RED-
BLSTM Interact, is significantly better than that of FM.



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2839599, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2017 12

TABLE 3: Viewability Prediction. Threshold = 5s

Approaches Logloss Accuracy AUC
GlobalAverage 0.6786 57.35% 59.42%
Logistic Regression 0.6726 58.94% 61.47%
FM 0.6527 60.13% 63.54%
BLSTM Interact 0.6250 64.87% 70.72%
RED-BLSTM Interact 0.6226 65.28% 71.24%

TABLE 4: Viewability Prediction. Threshold = 10s

Approaches Logloss Accuracy AUC
GlobalAverage 0.6635 59.65% 58.46%
Logistic Regression 0.6546 60.40% 61.61%
FM 0.6332 62.58% 63.96%
BLSTM Interact 0.6076 66.98% 70.94%
RED-BLSTM Interact 0.6049 67.37% 71.37%

This shows that a deep neural network can discover more
underlying patterns between input variables, which can
then improve the overall performance. The dependency
between page depths also contributes to better viewability
prediction. The Logistic Regression uses one-hot encoding
to represent the user, page, and page depths. Thus, it has
limited capability to fit the data as well as the FM which
builds latent vectors to model the three categorical variables.
The GlobalAverage always makes the deterministic predic-
tion using the fraction of positive page depths computed
based on the training data. Its performance is the lowest
compared with the other methods.

5.7 Effect of Main Parameters

In this section, we tune the model by varying some impor-
tant parameters: the sizes of the embedding layers, and the
number of LSTM layers. In these experiments, the minimum
dwell time threshold is set to 5s, in which case the number
of negative training instances is almost the same as the
number of positive training cases. Note that the same ex-
periments have been conducted for the other two proposed
models, but due space constraints we show results only for
BLSTM Interact and RED-BLSTM Interact, which achieve
the best performance.

Figure 15a shows the effect of the dimensionality of
the embedding layers, i.e., the number of hidden neurons
in an embedding layer. It contains two LSTM layers and
the metrics are computed over the test data. To simplify
the solution space, we apply the same dimensionality for
user embedding, page embedding, and depth embedding.
Varying the dimensionality of the embedding layers also
change the dimensionality of the interactions. When varying
the embedding layer sizes, we fix the dimentionalities of the
bi-directional LSTM layers to 500.

The results show that higher-dimensional word em-
beddings do not always provide better performance. This
finding is in line with existing work [41] that applies word
embeddings in a Name Entity Recognition task. Although
intuitively wider embedding layers should have finer rep-
resentation, they also tends to cause overfitting. On the
other hand, too narrow embedding layers cannot capture
well the traits of input variables. Embedding=500 obtains

the lowest log-loss in the test data. It also has the highest
accuracy. However, Embedding=600 is slightly better than
Embedding=500 for the AUC score. This implies that Em-
bedding=500 is better than Embedding=600 for the decision
threshold of 0.5. But when considering all thresholds on
average, Embedding=600 is slightly better. On the other
hand, narrower embedding layers have fewer parameters to
learn, which requires less training data and shorter training
time. Therefore, Embedding=500 may still be preferable in
practice.

Figure 15b presents the effect of the numbers of the
bi-directional LSTM layers stacked sequentially. Each bi-
directional LSTM layer has 500 hidden neurons in each
direction. It clearly illustrates that the performance can
be significantly improved by increasing the number of bi-
directional LSTMs from 1 to 2. But all three performance
curves become flat for 3 layers and worse after adding the
fourth layer.

Figure 15c presents the effect of the number of BLSTM
layers in RED-BLSTM Interact model. The decoder BLSTM
has 500 hidden neurons and the encoder BLSTM has 100
hidden neurons in each direction. The results show the per-
formance gets worse with the increase of residual encoder-
decoder layers. This finding is different from that obtained
for residual neural networks for image processing [29]. The
reason is that the input of images has typically a much
higher dimensionality. In our problem, we need a wider
deep network to learn a richer representation of the input
entity. A hidden layer with more hidden nodes can capture
more latent features of a user, a page, a depth, or their
interaction with the context. Also, it is necessary to capture
more latent aspects of individual user, page, and depth
without explicit features. In addition, Figure 15b shows that
two LSTM layers are enough to fit well the user behavior
data. Although user behavior is difficult to learn, the user
behavior prediction problem usually does not require too
many reasoning steps vertically at each time step [22], com-
pared with the deep networks used in computer vision [42].

5.8 Performance of Exact Dwell Time Prediction

The proposed models for page depth viewability prediction
can also be applied to predict the exact dwell time of a page
depth. This can also be useful for publishers and advertisers:
For example, predicted depth-level dwell time can help
publishers quantify the interestingness of a page depth to
a specific user. In this case, the publisher can determine
at which depth is preferable to show recommended article
links. Also, advertisers may want to know the exact dwell
time that a user will spend at a page depth.

As mentioned in section 4.1, the main difference be-
tween viewability prediction and exact dwell time predic-
tion is the output. Thus, in order to make page depth dwell
time prediction, we change the activation function of the
output layer from a sigmoid function to a rectified linear
unit (ReLU). Given a input x of a linear combination sent
from the previous layer, ReLU converts it by Equation 11 .

relu(x) = max(0, x) (11)

Thus, the output of a ReLU is a non-negative value. In
addition, the learning rate is reduced from 0.01 to 0.001



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2839599, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2017 13

(a) Varying the Embedding Widths (b) LSTM layers in BLSTM Interact (c) LSTM layers in RED-BLSTM Interact

Fig. 15: Effect of Main Parameters

Fig. 16: Performance of Dwell Time Prediction

because 0.01 is too large for the regression problem. We
use the mean squared deviation as the objective function.
The results are calculated based on all test page depths.
Figure 16 shows that the proposed deep learning models
significantly outperform the comparison systems. The RED-
BLSTM Interact generates the least RMSD.

6 CONCLUSIONS

Online publishers and advertisers are interested to predict
how likely it is that a user will stay at a page depth for
at least a certain dwell time, defined as webpage depth
viewability. Viewability prediction can maximize publish-
ers’ ad revenue and boost advertisers’ return on investment.
This paper presented four deep sequential neural networks
based on Recurrent Neural Network (RNN) with the Long
Short-Term Memory (LSTM). The proposed models predict
the viewability and exact dwell time for any page depth
in a specific page view. Using a real-world dataset, the
experiments consistently show our models outperforming
the comparison models.

ACKNOWLEDGEMENT

This work is partially supported by NSF under grants No.
CAREER IIS-1322406, CNS 1409523, and DGE 1565478, by
a Google Research Award, and by an endowment from
the Leir Charitable Foundations. Any opinions, findings,
and conclusions expressed in this material are those of
the authors and do not necessarily reflect the views of the
funding agencies.

REFERENCES

[1] Google, “The importance of being seen,”
https://think.storage.googleapis.com/docs/the-importance-
of-being-seen study.pdf,2014.

[2] C. Wang, A. Kalra, C. Borcea, and Y. Chen, “Revenue-optimized
webpage recommendation,” in 2015 IEEE International Conference
on Data Mining Workshop (ICDMW). IEEE, 2015, pp. 1558–1559.

[3] P. Yin, P. Luo, W.-C. Lee, and M. Wang, “Silence is also evidence:
interpreting dwell time for recommendation from psychological
perspective,” in Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2013, pp.
989–997.

[4] C. Wang, A. Kalra, C. Borcea, and Y. Chen, “Viewability prediction
for online display ads,” in Proceedings of the 24th ACM International
Conference on Information and Knowledge Management. ACM, 2015,
pp. 413–422.

[5] C. Wang, A. Kalra, L. Zhou, C. Borcea, and Y. Chen, “Probabilistic
models for ad viewability prediction on the web,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. PP, no. 99, pp. 1–1,
2017.

[6] C. Wang, A. Kalra, C. Borcea, and Y. Chen, “Webpage depth-level
dwell time prediction,” in Proceedings of the 25th ACM International
Conference on Information and Knowledge Management. ACM, 2016,
pp. 1937–1940.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, p. 436, 2015.

[8] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer
with deep neural networks,” Nature, vol. 542, no. 7639, p. 115,
2017.

[9] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[10] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[11] A. Graves, “Supervised sequence labelling,” in Supervised Sequence
Labelling with Recurrent Neural Networks. Springer, 2012, pp. 5–13.

[12] C. Liu, R. W. White, and S. Dumais, “Understanding web brows-
ing behaviors through weibull analysis of dwell time,” in Proceed-
ings of the 33rd international ACM SIGIR conference on Research and
development in information retrieval. ACM, 2010, pp. 379–386.

[13] X. Yi, L. Hong, E. Zhong, N. N. Liu, and S. Rajan, “Beyond clicks:
dwell time for personalization,” in Proceedings of the 8th ACM
Conference on Recommender systems. ACM, 2014, pp. 113–120.

[14] Y. Kim, A. Hassan, R. W. White, and I. Zitouni, “Modeling dwell
time to predict click-level satisfaction,” in Proceedings of the 7th
ACM international conference on Web search and data mining. ACM,
2014, pp. 193–202.

[15] S. Xu, H. Jiang, and F. Lau, “Mining user dwell time for person-
alized web search re-ranking,” in Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence, vol. 22, no. 3,
2011, pp. 2367–2372.

[16] S. Rendle, “Factorization machines with libfm,” ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 3, no. 3, p. 57, 2012.

[17] D. Lagun and M. Lalmas, “Understanding user attention and en-
gagement in online news reading,” in Proceedings of the Ninth ACM
International Conference on Web Search and Data Mining. ACM,
2016, pp. 113–122.



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2839599, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2017 14

[18] S. Lawrence, C. L. Giles, and S. Fong, “Natural language grammat-
ical inference with recurrent neural networks,” IEEE Transactions
on Knowledge and Data Engineering, vol. 12, no. 1, pp. 126–140, 2000.

[19] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of
training recurrent neural networks,” in Proceedings of The 30th
International Conference on Machine Learning, 2013, pp. 1310–1318.

[20] M. Sundermeyer, H. Ney, and R. Schlüter, “From feedforward
to recurrent lstm neural networks for language modeling,”
IEEE/ACM Transactions on Audio, Speech and Language Processing
(TASLP), vol. 23, no. 3, pp. 517–529, 2015.

[21] A. Graves, N. Jaitly, and A.-r. Mohamed, “Hybrid speech recog-
nition with deep bidirectional lstm,” in 2013 IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU), 2016.

[22] A. Borisov, I. Markov, M. de Rijke, and P. Serdyukov, “A neural
click model for web search,” in Proceedings of the 25th International
Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 2016, pp. 531–541.

[23] M. Claypool, P. Le, M. Wased, and D. Brown, “Implicit interest
indicators,” in Proceedings of the 6th international conference on
Intelligent user interfaces. ACM, 2001, pp. 33–40.

[24] M. Chen and Y. U. Ryu, “Facilitating effective user navigation
through website structure improvement,” IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 3, pp. 571–588, 2013.

[25] Y. Zhang, H. Dai, C. Xu, J. Feng, T. Wang, J. Bian, B. Wang, and
T.-Y. Liu, “Sequential click prediction for sponsored search with
recurrent neural networks,” in Twenty-Eighth AAAI Conference on
Artificial Intelligence, 2014.

[26] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting.” Journal of Machine Learning Research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[27] Y. Bengio, I. J. Goodfellow, and A. Courville, “Deep learning,” An
MIT Press book in preparation. Draft chapters available at http://www.
iro. umontreal. ca/ bengioy/dlbook, 2015.

[28] J. Hanson, Y. Yang, K. Paliwal, and Y. Zhou, “Improving protein
disorder prediction by deep bidirectional long short-term memory
recurrent neural networks,” Bioinformatics, p. btw678, 2016.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[30] L. Yu, X. Yang, H. Chen, J. Qin, and P.-A. Heng, “Volumetric
convnets with mixed residual connections for automated prostate
segmentation from 3d mr images.” in AAAI, 2017, pp. 66–72.

[31] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised
learning of video representations using lstms,” in International
conference on machine learning, 2015, pp. 843–852.

[32] Y. Bengio et al., “Learning deep architectures for ai,” Foundations
and trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[33] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extract-
ing and composing robust features with denoising autoencoders,”
in Proceedings of the 25th international conference on Machine learning.
ACM, 2008, pp. 1096–1103.

[34] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender
Systems Handbook, 1st ed. New York, NY, USA: Springer-Verlag
New York, Inc., 2010.

[35] F. Chollet, “keras,” https://github.com/fchollet/keras, 2015.
[36] Theano Development Team, “Theano: A Python framework for

fast computation of mathematical expressions,” arXiv e-prints,
May 2016. [Online]. Available: http://arxiv.org/abs/1605.02688

[37] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 9–48.

[38] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the
importance of initialization and momentum in deep learning.”
ICML (3), vol. 28, pp. 1139–1147, 2013.

[39] C. Elkan, “The foundations of cost-sensitive learning,” in In-
ternational joint conference on artificial intelligence, vol. 17, no. 1.
Lawrence Erlbaum Associates Ltd, 2001, pp. 973–978.

[40] J. Chen, C.-A. Tsai, H. Moon, H. Ahn, J. Young, and C.-H. Chen,
“Decision threshold adjustment in class prediction,” SAR and
QSAR in Environmental Research, vol. 17, no. 3, pp. 337–352, 2006.

[41] J. Turian, L. Ratinov, and Y. Bengio, “Word representations: a
simple and general method for semi-supervised learning,” in Pro-
ceedings of the 48th annual meeting of the association for computational
linguistics. Association for Computational Linguistics, 2010, pp.
384–394.

[42] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” Proceedings of the 5th
International Conference on Learning Representations, 2015.

Chong Wang received his Bachelor’s degree
from Nanjing University of Posts and Telecom-
munications, Nanjing, China, in 2010, and Ph.D.
degree in Information Systems at New Jersey
Institute of Technology (NJIT) in 2017. His re-
search interests include machine learning, text
mining and computational advertising.

Shuai Zhao received his Bachelor’s degree from
Xidian University, Xi’an, China, in 2014. He is
pursuing the doctoral degree in business data
science at Martin Tuchman School of Manage-
ment of NJIT. His research interest is data min-
ing and machine learning around business appli-
cations.

Achir Kalra is a doctoral student in Computer
Science at NJIT. He is also the senior vice pres-
ident of revenue operations & strategic partner-
ships at Forbes Media, where he is responsible
for programmatic sales, yield management and
developing strategic partnerships to grow rev-
enues outside Forbes’ traditional display busi-
ness. His research is in display advertising for
web publishing.

Cristian Borcea is a Professor and the Chair
of the Computer Science Department at NJIT.
He also holds a Visiting Professor appointment
at the National Institute of Informatics in Tokyo,
Japan. His research interests include: mobile
computing & sensing; ad hoc & vehicular net-
works; and cloud & distributed systems. Cristian
received his PhD from Rutgers University, and
he is a member of ACM and Usenix.

Yi Chen is an associate professor and the Henry
J. Leir Chair in Healthcare in the School of Man-
agement with a joint appointment in the College
of Computing Sciences at New Jersey Institute
of Technology (NJIT). Prior to joining NJIT, she
was an associate professor in Arizona State Uni-
versity. She received her Ph.D. degree in Com-
puter Science from the University of Pennsylva-
nia in 2005 and B.S. from Central South Univer-
sity in 1999. Her research interests span many
aspects of data management. She has served

in the organization and program committees for various conferences,
including SIGMOD, VLDB, ICDE and WWW, served as an associate
editor for DAPD, a guest editor for TKDE and PVLDB, and a general
co-chair for SIGMOD’2012.




